Таблицы распределений
В этом разделе представлены стандартные таблицы функций распределения. Такое традиционное представление имеет свои преимущества перед вероятностным калькулятором (например, таким, который включен в систему STATISTICA), поскольку в таблицах одновременно представлено большое число значений, и пользователь может достаточно быстро исследовать большой диапазон значений вероятностей.
Все приведенные ниже распределения рассчитаны с помощью функций STATISTICA BASIC и сверены с другими опубликованными таблицами.
Стандартное нормальное (Z) распределение
Стандартное нормальное распределение используется при проверке различных гипотез, в том числе о среднем значении, о различии между двумя средними и о пропорциональности значений. Оно имеет среднее 0 и стандартное отклонение 1. На предыдущем рисунке динамически показана плотность распределения и соответствующие разным величинам значения вероятности. Дополнительную информацию о нормальном распределении и его использовании при статистической проверке гипотез можно найти в разделах Элементарные понятия статистики и Нормальное распределение.
Значения, приведенные в таблице, представляют собой величину площади под стандартной нормальной (гауссовой) кривой от 0 до соответствующего z-значения, как показано на следующем рисунке. Например, величина этой площади между значениями 0 и 2.36 показана в ячейке, находящейся на пересечении строки 2.30 и столбца 0.06, и составляет 0.4909. Значение площади между 0 и отрицательным значением находится на пересечении строки и столбца, которые в сумме соответствуют абсолютному значению заданной величины. Например, площадь под кривой от -1.3 до 0 равна площади под кривой между 1.3 и 0, поэтому ее значение находится на пересечении строки 1.3 и столбца 0.00 (и составляет 0.4032).
0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319 | 0.0359 |
0.1 | 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753 |
0.2 | 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141 |
0.3 | 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517 |
0.4 | 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879 |
0.5 | 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224 |
0.6 | 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549 |
0.7 | 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852 |
0.8 | 0.2881 | 0.2910 | 0.2939 | 0.2967 | 0.2995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133 |
0.9 | 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389 |
1.0 | 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531 | 0.3554 | 0.3577 | 0.3599 | 0.3621 |
1.1 | 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830 |
1.2 | 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015 |
1.3 | 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115 | 0.4131 | 0.4147 | 0.4162 | 0.4177 |
1.4 | 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | 0.4319 |
1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394 | 0.4406 | 0.4418 | 0.4429 | 0.4441 |
1.6 | 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505 | 0.4515 | 0.4525 | 0.4535 | 0.4545 |
1.7 | 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | 0.4633 |
1.8 | 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | 0.4693 | 0.4699 | 0.4706 |
1.9 | 0.4713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744 | 0.4750 | 0.4756 | 0.4761 | 0.4767 |
2.0 | 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798 | 0.4803 | 0.4808 | 0.4812 | 0.4817 |
2.1 | 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | 0.4857 |
2.2 | 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | 0.4890 |
2.3 | 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | 0.4916 |
2.4 | 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929 | 0.4931 | 0.4932 | 0.4934 | 0.4936 |
2.5 | 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952 |
2.6 | 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | 0.4964 |
2.7 | 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | 0.4972 | 0.4973 | 0.4974 |
2.8 | 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981 |
2.9 | 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986 |
3.0 | 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990 |
В начало |
Форма распределения Стьюдента зависит от числа степеней свободы. На предыдущей картинке показано, как при увеличении этого параметра меняется форма распределения. О том, как t-распределение используется при проверке гипотез, можно прочитать в разделах t-критерий для независимых выборок и t-критерий для зависимых выборок в главе Основные статистики и таблицы, а также в разделе Распределение Стьюдента. Из приведенной ниже схемы видно, что в верхней части таблицы приведены вероятности получить значения, большие, чем указаны в соответствующей ячейке. Критическое значение, соответствующее вероятности 0.05 t-распределения с 6-ю степенями свободы, находится на пересечении столбца 0.05 и строки 6: t(.05,6) = 1.943180.
df\p | 0.40 | 0.25 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 |
---|---|---|---|---|---|---|---|---|
1 | 0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674 | 636.6192 |
2 | 0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265 | 6.96456 | 9.92484 | 31.5991 |
3 | 0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245 | 4.54070 | 5.84091 | 12.9240 |
4 | 0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645 | 3.74695 | 4.60409 | 8.6103 |
5 | 0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058 | 3.36493 | 4.03214 | 6.8688 |
6 | 0.264835 | 0.717558 | 1.439756 | 1.943180 | 2.44691 | 3.14267 | 3.70743 | 5.9588 |
7 | 0.263167 | 0.711142 | 1.414924 | 1.894579 | 2.36462 | 2.99795 | 3.49948 | 5.4079 |
8 | 0.261921 | 0.706387 | 1.396815 | 1.859548 | 2.30600 | 2.89646 | 3.35539 | 5.0413 |
9 | 0.260955 | 0.702722 | 1.383029 | 1.833113 | 2.26216 | 2.82144 | 3.24984 | 4.7809 |
10 | 0.260185 | 0.699812 | 1.372184 | 1.812461 | 2.22814 | 2.76377 | 3.16927 | 4.5869 |
11 | 0.259556 | 0.697445 | 1.363430 | 1.795885 | 2.20099 | 2.71808 | 3.10581 | 4.4370 |
12 | 0.259033 | 0.695483 | 1.356217 | 1.782288 | 2.17881 | 2.68100 | 3.05454 | 4.3178 |
13 | 0.258591 | 0.693829 | 1.350171 | 1.770933 | 2.16037 | 2.65031 | 3.01228 | 4.2208 |
14 | 0.258213 | 0.692417 | 1.345030 | 1.761310 | 2.14479 | 2.62449 | 2.97684 | 4.1405 |
15 | 0.257885 | 0.691197 | 1.340606 | 1.753050 | 2.13145 | 2.60248 | 2.94671 | 4.0728 |
16 | 0.257599 | 0.690132 | 1.336757 | 1.745884 | 2.11991 | 2.58349 | 2.92078 | 4.0150 |
17 | 0.257347 | 0.689195 | 1.333379 | 1.739607 | 2.10982 | 2.56693 | 2.89823 | 3.9651 |
18 | 0.257123 | 0.688364 | 1.330391 | 1.734064 | 2.10092 | 2.55238 | 2.87844 | 3.9216 |
19 | 0.256923 | 0.687621 | 1.327728 | 1.729133 | 2.09302 | 2.53948 | 2.86093 | 3.8834 |
20 | 0.256743 | 0.686954 | 1.325341 | 1.724718 | 2.08596 | 2.52798 | 2.84534 | 3.8495 |
21 | 0.256580 | 0.686352 | 1.323188 | 1.720743 | 2.07961 | 2.51765 | 2.83136 | 3.8193 |
22 | 0.256432 | 0.685805 | 1.321237 | 1.717144 | 2.07387 | 2.50832 | 2.81876 | 3.7921 |
23 | 0.256297 | 0.685306 | 1.319460 | 1.713872 | 2.06866 | 2.49987 | 2.80734 | 3.7676 |
24 | 0.256173 | 0.684850 | 1.317836 | 1.710882 | 2.06390 | 2.49216 | 2.79694 | 3.7454 |
25 | 0.256060 | 0.684430 | 1.316345 | 1.708141 | 2.05954 | 2.48511 | 2.78744 | 3.7251 |
26 | 0.255955 | 0.684043 | 1.314972 | 1.705618 | 2.05553 | 2.47863 | 2.77871 | 3.7066 |
27 | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183 | 2.47266 | 2.77068 | 3.6896 |
28 | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841 | 2.46714 | 2.76326 | 3.6739 |
29 | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523 | 2.46202 | 2.75639 | 3.6594 |
30 | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227 | 2.45726 | 2.75000 | 3.6460 |
inf | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996 | 2.32635 | 2.57583 | 3.2905 |
В начало |
Как и в случае t-распределения Стьюдента, форма хи-квадрат распределения определяется числом степеней свободы. На предыдущем рисунке показана его форма для различных степеней свободы (1, 2, 5, 10, 25 и 50). Примеры использования хи-квадрат распределения для проверки гипотез можно найти в разделах Статистики и построение таблиц в главах Основные статистики и таблицы и Нелинейное оценивание, а также в разделе Хи-квадрат распределение. В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы. Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.
df\area | .995 | .990 | .975 | .950 | .900 | .750 | .500 | .250 | .100 | .050 | .025 | .010 | .005 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.01579 | 0.10153 | 0.45494 | 1.32330 | 2.70554 | 3.84146 | 5.02389 | 6.63490 | 7.87944 |
2 | 0.01003 | 0.02010 | 0.05064 | 0.10259 | 0.21072 | 0.57536 | 1.38629 | 2.77259 | 4.60517 | 5.99146 | 7.37776 | 9.21034 | 10.59663 |
3 | 0.07172 | 0.11483 | 0.21580 | 0.35185 | 0.58437 | 1.21253 | 2.36597 | 4.10834 | 6.25139 | 7.81473 | 9.34840 | 11.34487 | 12.83816 |
4 | 0.20699 | 0.29711 | 0.48442 | 0.71072 | 1.06362 | 1.92256 | 3.35669 | 5.38527 | 7.77944 | 9.48773 | 11.14329 | 13.27670 | 14.86026 |
5 | 0.41174 | 0.55430 | 0.83121 | 1.14548 | 1.61031 | 2.67460 | 4.35146 | 6.62568 | 9.23636 | 11.07050 | 12.83250 | 15.08627 | 16.74960 |
6 | 0.67573 | 0.87209 | 1.23734 | 1.63538 | 2.20413 | 3.45460 | 5.34812 | 7.84080 | 10.64464 | 12.59159 | 14.44938 | 16.81189 | 18.54758 |
7 | 0.98926 | 1.23904 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 | 9.03715 | 12.01704 | 14.06714 | 16.01276 | 18.47531 | 20.27774 |
8 | 1.34441 | 1.64650 | 2.17973 | 2.73264 | 3.48954 | 5.07064 | 7.34412 | 10.21885 | 13.36157 | 15.50731 | 17.53455 | 20.09024 | 21.95495 |
9 | 1.73493 | 2.08790 | 2.70039 | 3.32511 | 4.16816 | 5.89883 | 8.34283 | 11.38875 | 14.68366 | 16.91898 | 19.02277 | 21.66599 | 23.58935 |
10 | 2.15586 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 6.73720 | 9.34182 | 12.54886 | 15.98718 | 18.30704 | 20.48318 | 23.20925 | 25.18818 |
11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.34100 | 13.70069 | 17.27501 | 19.67514 | 21.92005 | 24.72497 | 26.75685 |
12 | 3.07382 | 3.57057 | 4.40379 | 5.22603 | 6.30380 | 8.43842 | 11.34032 | 14.84540 | 18.54935 | 21.02607 | 23.33666 | 26.21697 | 28.29952 |
13 | 3.56503 | 4.10692 | 5.00875 | 5.89186 | 7.04150 | 9.29907 | 12.33976 | 15.98391 | 19.81193 | 22.36203 | 24.73560 | 27.68825 | 29.81947 |
14 | 4.07467 | 4.66043 | 5.62873 | 6.57063 | 7.78953 | 10.16531 | 13.33927 | 17.11693 | 21.06414 | 23.68479 | 26.11895 | 29.14124 | 31.31935 |
15 | 4.60092 | 5.22935 | 6.26214 | 7.26094 | 8.54676 | 11.03654 | 14.33886 | 18.24509 | 22.30713 | 24.99579 | 27.48839 | 30.57791 | 32.80132 |
16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.31224 | 11.91222 | 15.33850 | 19.36886 | 23.54183 | 26.29623 | 28.84535 | 31.99993 | 34.26719 |
17 | 5.69722 | 6.40776 | 7.56419 | 8.67176 | 10.08519 | 12.79193 | 16.33818 | 20.48868 | 24.76904 | 27.58711 | 30.19101 | 33.40866 | 35.71847 |
18 | 6.26480 | 7.01491 | 8.23075 | 9.39046 | 10.86494 | 13.67529 | 17.33790 | 21.60489 | 25.98942 | 28.86930 | 31.52638 | 34.80531 | 37.15645 |
19 | 6.84397 | 7.63273 | 8.90652 | 10.11701 | 11.65091 | 14.56200 | 18.33765 | 22.71781 | 27.20357 | 30.14353 | 32.85233 | 36.19087 | 38.58226 |
20 | 7.43384 | 8.26040 | 9.59078 | 10.85081 | 12.44261 | 15.45177 | 19.33743 | 23.82769 | 28.41198 | 31.41043 | 34.16961 | 37.56623 | 39.99685 |
21 | 8.03365 | 8.89720 | 10.28290 | 11.59131 | 13.23960 | 16.34438 | 20.33723 | 24.93478 | 29.61509 | 32.67057 | 35.47888 | 38.93217 | 41.40106 |
22 | 8.64272 | 9.54249 | 10.98232 | 12.33801 | 14.04149 | 17.23962 | 21.33704 | 26.03927 | 30.81328 | 33.92444 | 36.78071 | 40.28936 | 42.79565 |
23 | 9.26042 | 10.19572 | 11.68855 | 13.09051 | 14.84796 | 18.13730 | 22.33688 | 27.14134 | 32.00690 | 35.17246 | 38.07563 | 41.63840 | 44.18128 |
24 | 9.88623 | 10.85636 | 12.40115 | 13.84843 | 15.65868 | 19.03725 | 23.33673 | 28.24115 | 33.19624 | 36.41503 | 39.36408 | 42.97982 | 45.55851 |
25 | 10.51965 | 11.52398 | 13.11972 | 14.61141 | 16.47341 | 19.93934 | 24.33659 | 29.33885 | 34.38159 | 37.65248 | 40.64647 | 44.31410 | 46.92789 |
26 | 11.16024 | 12.19815 | 13.84390 | 15.37916 | 17.29188 | 20.84343 | 25.33646 | 30.43457 | 35.56317 | 38.88514 | 41.92317 | 45.64168 | 48.28988 |
27 | 11.80759 | 12.87850 | 14.57338 | 16.15140 | 18.11390 | 21.74940 | 26.33634 | 31.52841 | 36.74122 | 40.11327 | 43.19451 | 46.96294 | 49.64492 |
28 | 12.46134 | 13.56471 | 15.30786 | 16.92788 | 18.93924 | 22.65716 | 27.33623 | 32.62049 | 37.91592 | 41.33714 | 44.46079 | 48.27824 | 50.99338 |
29 | 13.12115 | 14.25645 | 16.04707 | 17.70837 | 19.76774 | 23.56659 | 28.33613 | 33.71091 | 39.08747 | 42.55697 | 45.72229 | 49.58788 | 52.33562 |
30 | 13.78672 | 14.95346 | 16.79077 | 18.49266 | 20.59923 | 24.47761 | 29.33603 | 34.79974 | 40.25602 | 43.77297 | 46.97924 | 50.89218 | 53.67196 |
В начало |
F-распределение является асимметричным и обычно используется в дисперсионном анализе. Такую плотность распределения имеют величины, являющиеся отношением двух величин, имющих хи-квадрат распределение, при этом соответствующее F-распределение определяется двумя значениями числа степеней свободы. На показанной выше иллюстрации показано распределение F(10,10) . Первый индекс всегда соответствует числу степеней свободы для числителя, и этот порядок является существенным, поскольку F(10,12) не равно F(12,10). В приведенных ниже таблицах в столбце показано число степеней свободы числителя, а в строке - число степней свободы для знаменателя. В названии таблицы указано значение вероятности. Например, критическое значение F-распределения для вероятности .05 и степеней свободы 10 и 12 находится на пересечении столбца с значением 10 (числитель) и строки с значением 12 (знаменатель) в таблице "F-распределение для alpha=.05": F(.05, 10, 12) = 2.7534.
F-распределение для alpha=.10 .
df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | INF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 39.86346 | 49.50000 | 53.59324 | 55.83296 | 57.24008 | 58.20442 | 58.90595 | 59.43898 | 59.85759 | 60.19498 | 60.70521 | 61.22034 | 61.74029 | 62.00205 | 62.26497 | 62.52905 | 62.79428 | 63.06064 | 63.32812 |
2 | 8.52632 | 9.00000 | 9.16179 | 9.24342 | 9.29263 | 9.32553 | 9.34908 | 9.36677 | 9.38054 | 9.39157 | 9.40813 | 9.42471 | 9.44131 | 9.44962 | 9.45793 | 9.46624 | 9.47456 | 9.48289 | 9.49122 |
3 | 5.53832 | 5.46238 | 5.39077 | 5.34264 | 5.30916 | 5.28473 | 5.26619 | 5.25167 | 5.24000 | 5.23041 | 5.21562 | 5.20031 | 5.18448 | 5.17636 | 5.16811 | 5.15972 | 5.15119 | 5.14251 | 5.13370 |
4 | 4.54477 | 4.32456 | 4.19086 | 4.10725 | 4.05058 | 4.00975 | 3.97897 | 3.95494 | 3.93567 | 3.91988 | 3.89553 | 3.87036 | 3.84434 | 3.83099 | 3.81742 | 3.80361 | 3.78957 | 3.77527 | 3.76073 |
5 | 4.06042 | 3.77972 | 3.61948 | 3.52020 | 3.45298 | 3.40451 | 3.36790 | 3.33928 | 3.31628 | 3.29740 | 3.26824 | 3.23801 | 3.20665 | 3.19052 | 3.17408 | 3.15732 | 3.14023 | 3.12279 | 3.10500 |
6 | 3.77595 | 3.46330 | 3.28876 | 3.18076 | 3.10751 | 3.05455 | 3.01446 | 2.98304 | 2.95774 | 2.93693 | 2.90472 | 2.87122 | 2.83634 | 2.81834 | 2.79996 | 2.78117 | 2.76195 | 2.74229 | 2.72216 |
7 | 3.58943 | 3.25744 | 3.07407 | 2.96053 | 2.88334 | 2.82739 | 2.78493 | 2.75158 | 2.72468 | 2.70251 | 2.66811 | 2.63223 | 2.59473 | 2.57533 | 2.55546 | 2.53510 | 2.51422 | 2.49279 | 2.47079 |
8 | 3.45792 | 3.11312 | 2.92380 | 2.80643 | 2.72645 | 2.66833 | 2.62413 | 2.58935 | 2.56124 | 2.53804 | 2.50196 | 2.46422 | 2.42464 | 2.40410 | 2.38302 | 2.36136 | 2.33910 | 2.31618 | 2.29257 |
9 | 3.36030 | 3.00645 | 2.81286 | 2.69268 | 2.61061 | 2.55086 | 2.50531 | 2.46941 | 2.44034 | 2.41632 | 2.37888 | 2.33962 | 2.29832 | 2.27683 | 2.25472 | 2.23196 | 2.20849 | 2.18427 | 2.15923 |
10 | 3.28502 | 2.92447 | 2.72767 | 2.60534 | 2.52164 | 2.46058 | 2.41397 | 2.37715 | 2.34731 | 2.32260 | 2.28405 | 2.24351 | 2.20074 | 2.17843 | 2.15543 | 2.13169 | 2.10716 | 2.08176 | 2.05542 |
11 | 3.22520 | 2.85951 | 2.66023 | 2.53619 | 2.45118 | 2.38907 | 2.34157 | 2.30400 | 2.27350 | 2.24823 | 2.20873 | 2.16709 | 2.12305 | 2.10001 | 2.07621 | 2.05161 | 2.02612 | 1.99965 | 1.97211 |
12 | 3.17655 | 2.80680 | 2.60552 | 2.48010 | 2.39402 | 2.33102 | 2.28278 | 2.24457 | 2.21352 | 2.18776 | 2.14744 | 2.10485 | 2.05968 | 2.03599 | 2.01149 | 1.98610 | 1.95973 | 1.93228 | 1.90361 |
13 | 3.13621 | 2.76317 | 2.56027 | 2.43371 | 2.34672 | 2.28298 | 2.23410 | 2.19535 | 2.16382 | 2.13763 | 2.09659 | 2.05316 | 2.00698 | 1.98272 | 1.95757 | 1.93147 | 1.90429 | 1.87591 | 1.84620 |
14 | 3.10221 | 2.72647 | 2.52222 | 2.39469 | 2.30694 | 2.24256 | 2.19313 | 2.15390 | 2.12195 | 2.09540 | 2.05371 | 2.00953 | 1.96245 | 1.93766 | 1.91193 | 1.88516 | 1.85723 | 1.82800 | 1.79728 |
15 | 3.07319 | 2.69517 | 2.48979 | 2.36143 | 2.27302 | 2.20808 | 2.15818 | 2.11853 | 2.08621 | 2.05932 | 2.01707 | 1.97222 | 1.92431 | 1.89904 | 1.87277 | 1.84539 | 1.81676 | 1.78672 | 1.75505 |
16 | 3.04811 | 2.66817 | 2.46181 | 2.33274 | 2.24376 | 2.17833 | 2.12800 | 2.08798 | 2.05533 | 2.02815 | 1.98539 | 1.93992 | 1.89127 | 1.86556 | 1.83879 | 1.81084 | 1.78156 | 1.75075 | 1.71817 |
17 | 3.02623 | 2.64464 | 2.43743 | 2.30775 | 2.21825 | 2.15239 | 2.10169 | 2.06134 | 2.02839 | 2.00094 | 1.95772 | 1.91169 | 1.86236 | 1.83624 | 1.80901 | 1.78053 | 1.75063 | 1.71909 | 1.68564 |
18 | 3.00698 | 2.62395 | 2.41601 | 2.28577 | 2.19583 | 2.12958 | 2.07854 | 2.03789 | 2.00467 | 1.97698 | 1.93334 | 1.88681 | 1.83685 | 1.81035 | 1.78269 | 1.75371 | 1.72322 | 1.69099 | 1.65671 |
19 | 2.98990 | 2.60561 | 2.39702 | 2.26630 | 2.17596 | 2.10936 | 2.05802 | 2.01710 | 1.98364 | 1.95573 | 1.91170 | 1.86471 | 1.81416 | 1.78731 | 1.75924 | 1.72979 | 1.69876 | 1.66587 | 1.63077 |
20 | 2.97465 | 2.58925 | 2.38009 | 2.24893 | 2.15823 | 2.09132 | 2.03970 | 1.99853 | 1.96485 | 1.93674 | 1.89236 | 1.84494 | 1.79384 | 1.76667 | 1.73822 | 1.70833 | 1.67678 | 1.64326 | 1.60738 |
21 | 2.96096 | 2.57457 | 2.36489 | 2.23334 | 2.14231 | 2.07512 | 2.02325 | 1.98186 | 1.94797 | 1.91967 | 1.87497 | 1.82715 | 1.77555 | 1.74807 | 1.71927 | 1.68896 | 1.65691 | 1.62278 | 1.58615 |
22 | 2.94858 | 2.56131 | 2.35117 | 2.21927 | 2.12794 | 2.06050 | 2.00840 | 1.96680 | 1.93273 | 1.90425 | 1.85925 | 1.81106 | 1.75899 | 1.73122 | 1.70208 | 1.67138 | 1.63885 | 1.60415 | 1.56678 |
23 | 2.93736 | 2.54929 | 2.33873 | 2.20651 | 2.11491 | 2.04723 | 1.99492 | 1.95312 | 1.91888 | 1.89025 | 1.84497 | 1.79643 | 1.74392 | 1.71588 | 1.68643 | 1.65535 | 1.62237 | 1.58711 | 1.54903 |
24 | 2.92712 | 2.53833 | 2.32739 | 2.19488 | 2.10303 | 2.03513 | 1.98263 | 1.94066 | 1.90625 | 1.87748 | 1.83194 | 1.78308 | 1.73015 | 1.70185 | 1.67210 | 1.64067 | 1.60726 | 1.57146 | 1.53270 |
25 | 2.91774 | 2.52831 | 2.31702 | 2.18424 | 2.09216 | 2.02406 | 1.97138 | 1.92925 | 1.89469 | 1.86578 | 1.82000 | 1.77083 | 1.71752 | 1.68898 | 1.65895 | 1.62718 | 1.59335 | 1.55703 | 1.51760 |
26 | 2.90913 | 2.51910 | 2.30749 | 2.17447 | 2.08218 | 2.01389 | 1.96104 | 1.91876 | 1.88407 | 1.85503 | 1.80902 | 1.75957 | 1.70589 | 1.67712 | 1.64682 | 1.61472 | 1.58050 | 1.54368 | 1.50360 |
27 | 2.90119 | 2.51061 | 2.29871 | 2.16546 | 2.07298 | 2.00452 | 1.95151 | 1.90909 | 1.87427 | 1.84511 | 1.79889 | 1.74917 | 1.69514 | 1.66616 | 1.63560 | 1.60320 | 1.56859 | 1.53129 | 1.49057 |
28 | 2.89385 | 2.50276 | 2.29060 | 2.15714 | 2.06447 | 1.99585 | 1.94270 | 1.90014 | 1.86520 | 1.83593 | 1.78951 | 1.73954 | 1.68519 | 1.65600 | 1.62519 | 1.59250 | 1.55753 | 1.51976 | 1.47841 |
29 | 2.88703 | 2.49548 | 2.28307 | 2.14941 | 2.05658 | 1.98781 | 1.93452 | 1.89184 | 1.85679 | 1.82741 | 1.78081 | 1.73060 | 1.67593 | 1.64655 | 1.61551 | 1.58253 | 1.54721 | 1.50899 | 1.46704 |
30 | 2.88069 | 2.48872 | 2.27607 | 2.14223 | 2.04925 | 1.98033 | 1.92692 | 1.88412 | 1.84896 | 1.81949 | 1.77270 | 1.72227 | 1.66731 | 1.63774 | 1.60648 | 1.57323 | 1.53757 | 1.49891 | 1.45636 |
40 | 2.83535 | 2.44037 | 2.22609 | 2.09095 | 1.99682 | 1.92688 | 1.87252 | 1.82886 | 1.79290 | 1.76269 | 1.71456 | 1.66241 | 1.60515 | 1.57411 | 1.54108 | 1.50562 | 1.46716 | 1.42476 | 1.37691 |
60 | 2.79107 | 2.39325 | 2.17741 | 2.04099 | 1.94571 | 1.87472 | 1.81939 | 1.77483 | 1.73802 | 1.70701 | 1.65743 | 1.60337 | 1.54349 | 1.51072 | 1.47554 | 1.43734 | 1.39520 | 1.34757 | 1.29146 |
120 | 2.74781 | 2.34734 | 2.12999 | 1.99230 | 1.89587 | 1.82381 | 1.76748 | 1.72196 | 1.68425 | 1.65238 | 1.60120 | 1.54500 | 1.48207 | 1.44723 | 1.40938 | 1.36760 | 1.32034 | 1.26457 | 1.19256 |
inf | 2.70554 | 2.30259 | 2.08380 | 1.94486 | 1.84727 | 1.77411 | 1.71672 | 1.67020 | 1.63152 | 1.59872 | 1.54578 | 1.48714 | 1.42060 | 1.38318 | 1.34187 | 1.29513 | 1.23995 | 1.16860 | 1.00000 |
В начало |
F-распределение для
alpha=.05 .
df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | INF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161.4476 | 199.5000 | 215.7073 | 224.5832 | 230.1619 | 233.9860 | 236.7684 | 238.8827 | 240.5433 | 241.8817 | 243.9060 | 245.9499 | 248.0131 | 249.0518 | 250.0951 | 251.1432 | 252.1957 | 253.2529 | 254.3144 |
2 | 18.5128 | 19.0000 | 19.1643 | 19.2468 | 19.2964 | 19.3295 | 19.3532 | 19.3710 | 19.3848 | 19.3959 | 19.4125 | 19.4291 | 19.4458 | 19.4541 | 19.4624 | 19.4707 | 19.4791 | 19.4874 | 19.4957 |
3 | 10.1280 | 9.5521 | 9.2766 | 9.1172 | 9.0135 | 8.9406 | 8.8867 | 8.8452 | 8.8123 | 8.7855 | 8.7446 | 8.7029 | 8.6602 | 8.6385 | 8.6166 | 8.5944 | 8.5720 | 8.5494 | 8.5264 |
4 | 7.7086 | 6.9443 | 6.5914 | 6.3882 | 6.2561 | 6.1631 | 6.0942 | 6.0410 | 5.9988 | 5.9644 | 5.9117 | 5.8578 | 5.8025 | 5.7744 | 5.7459 | 5.7170 | 5.6877 | 5.6581 | 5.6281 |
5 | 6.6079 | 5.7861 | 5.4095 | 5.1922 | 5.0503 | 4.9503 | 4.8759 | 4.8183 | 4.7725 | 4.7351 | 4.6777 | 4.6188 | 4.5581 | 4.5272 | 4.4957 | 4.4638 | 4.4314 | 4.3985 | 4.3650 |
6 | 5.9874 | 5.1433 | 4.7571 | 4.5337 | 4.3874 | 4.2839 | 4.2067 | 4.1468 | 4.0990 | 4.0600 | 3.9999 | 3.9381 | 3.8742 | 3.8415 | 3.8082 | 3.7743 | 3.7398 | 3.7047 | 3.6689 |
7 | 5.5914 | 4.7374 | 4.3468 | 4.1203 | 3.9715 | 3.8660 | 3.7870 | 3.7257 | 3.6767 | 3.6365 | 3.5747 | 3.5107 | 3.4445 | 3.4105 | 3.3758 | 3.3404 | 3.3043 | 3.2674 | 3.2298 |
8 | 5.3177 | 4.4590 | 4.0662 | 3.8379 | 3.6875 | 3.5806 | 3.5005 | 3.4381 | 3.3881 | 3.3472 | 3.2839 | 3.2184 | 3.1503 | 3.1152 | 3.0794 | 3.0428 | 3.0053 | 2.9669 | 2.9276 |
9 | 5.1174 | 4.2565 | 3.8625 | 3.6331 | 3.4817 | 3.3738 | 3.2927 | 3.2296 | 3.1789 | 3.1373 | 3.0729 | 3.0061 | 2.9365 | 2.9005 | 2.8637 | 2.8259 | 2.7872 | 2.7475 | 2.7067 |
10 | 4.9646 | 4.1028 | 3.7083 | 3.4780 | 3.3258 | 3.2172 | 3.1355 | 3.0717 | 3.0204 | 2.9782 | 2.9130 | 2.8450 | 2.7740 | 2.7372 | 2.6996 | 2.6609 | 2.6211 | 2.5801 | 2.5379 |
11 | 4.8443 | 3.9823 | 3.5874 | 3.3567 | 3.2039 | 3.0946 | 3.0123 | 2.9480 | 2.8962 | 2.8536 | 2.7876 | 2.7186 | 2.6464 | 2.6090 | 2.5705 | 2.5309 | 2.4901 | 2.4480 | 2.4045 |
12 | 4.7472 | 3.8853 | 3.4903 | 3.2592 | 3.1059 | 2.9961 | 2.9134 | 2.8486 | 2.7964 | 2.7534 | 2.6866 | 2.6169 | 2.5436 | 2.5055 | 2.4663 | 2.4259 | 2.3842 | 2.3410 | 2.2962 |
13 | 4.6672 | 3.8056 | 3.4105 | 3.1791 | 3.0254 | 2.9153 | 2.8321 | 2.7669 | 2.7144 | 2.6710 | 2.6037 | 2.5331 | 2.4589 | 2.4202 | 2.3803 | 2.3392 | 2.2966 | 2.2524 | 2.2064 |
14 | 4.6001 | 3.7389 | 3.3439 | 3.1122 | 2.9582 | 2.8477 | 2.7642 | 2.6987 | 2.6458 | 2.6022 | 2.5342 | 2.4630 | 2.3879 | 2.3487 | 2.3082 | 2.2664 | 2.2229 | 2.1778 | 2.1307 |
15 | 4.5431 | 3.6823 | 3.2874 | 3.0556 | 2.9013 | 2.7905 | 2.7066 | 2.6408 | 2.5876 | 2.5437 | 2.4753 | 2.4034 | 2.3275 | 2.2878 | 2.2468 | 2.2043 | 2.1601 | 2.1141 | 2.0658 |
16 | 4.4940 | 3.6337 | 3.2389 | 3.0069 | 2.8524 | 2.7413 | 2.6572 | 2.5911 | 2.5377 | 2.4935 | 2.4247 | 2.3522 | 2.2756 | 2.2354 | 2.1938 | 2.1507 | 2.1058 | 2.0589 | 2.0096 |
17 | 4.4513 | 3.5915 | 3.1968 | 2.9647 | 2.8100 | 2.6987 | 2.6143 | 2.5480 | 2.4943 | 2.4499 | 2.3807 | 2.3077 | 2.2304 | 2.1898 | 2.1477 | 2.1040 | 2.0584 | 2.0107 | 1.9604 |
18 | 4.4139 | 3.5546 | 3.1599 | 2.9277 | 2.7729 | 2.6613 | 2.5767 | 2.5102 | 2.4563 | 2.4117 | 2.3421 | 2.2686 | 2.1906 | 2.1497 | 2.1071 | 2.0629 | 2.0166 | 1.9681 | 1.9168 |
19 | 4.3807 | 3.5219 | 3.1274 | 2.8951 | 2.7401 | 2.6283 | 2.5435 | 2.4768 | 2.4227 | 2.3779 | 2.3080 | 2.2341 | 2.1555 | 2.1141 | 2.0712 | 2.0264 | 1.9795 | 1.9302 | 1.8780 |
20 | 4.3512 | 3.4928 | 3.0984 | 2.8661 | 2.7109 | 2.5990 | 2.5140 | 2.4471 | 2.3928 | 2.3479 | 2.2776 | 2.2033 | 2.1242 | 2.0825 | 2.0391 | 1.9938 | 1.9464 | 1.8963 | 1.8432 |
21 | 4.3248 | 3.4668 | 3.0725 | 2.8401 | 2.6848 | 2.5727 | 2.4876 | 2.4205 | 2.3660 | 2.3210 | 2.2504 | 2.1757 | 2.0960 | 2.0540 | 2.0102 | 1.9645 | 1.9165 | 1.8657 | 1.8117 |
22 | 4.3009 | 3.4434 | 3.0491 | 2.8167 | 2.6613 | 2.5491 | 2.4638 | 2.3965 | 2.3419 | 2.2967 | 2.2258 | 2.1508 | 2.0707 | 2.0283 | 1.9842 | 1.9380 | 1.8894 | 1.8380 | 1.7831 |
23 | 4.2793 | 3.4221 | 3.0280 | 2.7955 | 2.6400 | 2.5277 | 2.4422 | 2.3748 | 2.3201 | 2.2747 | 2.2036 | 2.1282 | 2.0476 | 2.0050 | 1.9605 | 1.9139 | 1.8648 | 1.8128 | 1.7570 |
24 | 4.2597 | 3.4028 | 3.0088 | 2.7763 | 2.6207 | 2.5082 | 2.4226 | 2.3551 | 2.3002 | 2.2547 | 2.1834 | 2.1077 | 2.0267 | 1.9838 | 1.9390 | 1.8920 | 1.8424 | 1.7896 | 1.7330 |
25 | 4.2417 | 3.3852 | 2.9912 | 2.7587 | 2.6030 | 2.4904 | 2.4047 | 2.3371 | 2.2821 | 2.2365 | 2.1649 | 2.0889 | 2.0075 | 1.9643 | 1.9192 | 1.8718 | 1.8217 | 1.7684 | 1.7110 |
26 | 4.2252 | 3.3690 | 2.9752 | 2.7426 | 2.5868 | 2.4741 | 2.3883 | 2.3205 | 2.2655 | 2.2197 | 2.1479 | 2.0716 | 1.9898 | 1.9464 | 1.9010 | 1.8533 | 1.8027 | 1.7488 | 1.6906 |
27 | 4.2100 | 3.3541 | 2.9604 | 2.7278 | 2.5719 | 2.4591 | 2.3732 | 2.3053 | 2.2501 | 2.2043 | 2.1323 | 2.0558 | 1.9736 | 1.9299 | 1.8842 | 1.8361 | 1.7851 | 1.7306 | 1.6717 |
28 | 4.1960 | 3.3404 | 2.9467 | 2.7141 | 2.5581 | 2.4453 | 2.3593 | 2.2913 | 2.2360 | 2.1900 | 2.1179 | 2.0411 | 1.9586 | 1.9147 | 1.8687 | 1.8203 | 1.7689 | 1.7138 | 1.6541 |
29 | 4.1830 | 3.3277 | 2.9340 | 2.7014 | 2.5454 | 2.4324 | 2.3463 | 2.2783 | 2.2229 | 2.1768 | 2.1045 | 2.0275 | 1.9446 | 1.9005 | 1.8543 | 1.8055 | 1.7537 | 1.6981 | 1.6376 |
30 | 4.1709 | 3.3158 | 2.9223 | 2.6896 | 2.5336 | 2.4205 | 2.3343 | 2.2662 | 2.2107 | 2.1646 | 2.0921 | 2.0148 | 1.9317 | 1.8874 | 1.8409 | 1.7918 | 1.7396 | 1.6835 | 1.6223 |
40 | 4.0847 | 3.2317 | 2.8387 | 2.6060 | 2.4495 | 2.3359 | 2.2490 | 2.1802 | 2.1240 | 2.0772 | 2.0035 | 1.9245 | 1.8389 | 1.7929 | 1.7444 | 1.6928 | 1.6373 | 1.5766 | 1.5089 |
60 | 4.0012 | 3.1504 | 2.7581 | 2.5252 | 2.3683 | 2.2541 | 2.1665 | 2.0970 | 2.0401 | 1.9926 | 1.9174 | 1.8364 | 1.7480 | 1.7001 | 1.6491 | 1.5943 | 1.5343 | 1.4673 | 1.3893 |
120 | 3.9201 | 3.0718 | 2.6802 | 2.4472 | 2.2899 | 2.1750 | 2.0868 | 2.0164 | 1.9588 | 1.9105 | 1.8337 | 1.7505 | 1.6587 | 1.6084 | 1.5543 | 1.4952 | 1.4290 | 1.3519 | 1.2539 |
inf | 3.8415 | 2.9957 | 2.6049 | 2.3719 | 2.2141 | 2.0986 | 2.0096 | 1.9384 | 1.8799 | 1.8307 | 1.7522 | 1.6664 | 1.5705 | 1.5173 | 1.4591 | 1.3940 | 1.3180 | 1.2214 | 1.0000 |
В начало |
F-распределение для alpha=.025 .
df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | INF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 647.7890 | 799.5000 | 864.1630 | 899.5833 | 921.8479 | 937.1111 | 948.2169 | 956.6562 | 963.2846 | 968.6274 | 976.7079 | 984.8668 | 993.1028 | 997.2492 | 1001.414 | 1005.598 | 1009.800 | 1014.020 | 1018.258 |
2 | 38.5063 | 39.0000 | 39.1655 | 39.2484 | 39.2982 | 39.3315 | 39.3552 | 39.3730 | 39.3869 | 39.3980 | 39.4146 | 39.4313 | 39.4479 | 39.4562 | 39.465 | 39.473 | 39.481 | 39.490 | 39.498 |
3 | 17.4434 | 16.0441 | 15.4392 | 15.1010 | 14.8848 | 14.7347 | 14.6244 | 14.5399 | 14.4731 | 14.4189 | 14.3366 | 14.2527 | 14.1674 | 14.1241 | 14.081 | 14.037 | 13.992 | 13.947 | 13.902 |
4 | 12.2179 | 10.6491 | 9.9792 | 9.6045 | 9.3645 | 9.1973 | 9.0741 | 8.9796 | 8.9047 | 8.8439 | 8.7512 | 8.6565 | 8.5599 | 8.5109 | 8.461 | 8.411 | 8.360 | 8.309 | 8.257 |
5 | 10.0070 | 8.4336 | 7.7636 | 7.3879 | 7.1464 | 6.9777 | 6.8531 | 6.7572 | 6.6811 | 6.6192 | 6.5245 | 6.4277 | 6.3286 | 6.2780 | 6.227 | 6.175 | 6.123 | 6.069 | 6.015 |
6 | 8.8131 | 7.2599 | 6.5988 | 6.2272 | 5.9876 | 5.8198 | 5.6955 | 5.5996 | 5.5234 | 5.4613 | 5.3662 | 5.2687 | 5.1684 | 5.1172 | 5.065 | 5.012 | 4.959 | 4.904 | 4.849 |
7 | 8.0727 | 6.5415 | 5.8898 | 5.5226 | 5.2852 | 5.1186 | 4.9949 | 4.8993 | 4.8232 | 4.7611 | 4.6658 | 4.5678 | 4.4667 | 4.4150 | 4.362 | 4.309 | 4.254 | 4.199 | 4.142 |
8 | 7.5709 | 6.0595 | 5.4160 | 5.0526 | 4.8173 | 4.6517 | 4.5286 | 4.4333 | 4.3572 | 4.2951 | 4.1997 | 4.1012 | 3.9995 | 3.9472 | 3.894 | 3.840 | 3.784 | 3.728 | 3.670 |
9 | 7.2093 | 5.7147 | 5.0781 | 4.7181 | 4.4844 | 4.3197 | 4.1970 | 4.1020 | 4.0260 | 3.9639 | 3.8682 | 3.7694 | 3.6669 | 3.6142 | 3.560 | 3.505 | 3.449 | 3.392 | 3.333 |
10 | 6.9367 | 5.4564 | 4.8256 | 4.4683 | 4.2361 | 4.0721 | 3.9498 | 3.8549 | 3.7790 | 3.7168 | 3.6209 | 3.5217 | 3.4185 | 3.3654 | 3.311 | 3.255 | 3.198 | 3.140 | 3.080 |
11 | 6.7241 | 5.2559 | 4.6300 | 4.2751 | 4.0440 | 3.8807 | 3.7586 | 3.6638 | 3.5879 | 3.5257 | 3.4296 | 3.3299 | 3.2261 | 3.1725 | 3.118 | 3.061 | 3.004 | 2.944 | 2.883 |
12 | 6.5538 | 5.0959 | 4.4742 | 4.1212 | 3.8911 | 3.7283 | 3.6065 | 3.5118 | 3.4358 | 3.3736 | 3.2773 | 3.1772 | 3.0728 | 3.0187 | 2.963 | 2.906 | 2.848 | 2.787 | 2.725 |
13 | 6.4143 | 4.9653 | 4.3472 | 3.9959 | 3.7667 | 3.6043 | 3.4827 | 3.3880 | 3.3120 | 3.2497 | 3.1532 | 3.0527 | 2.9477 | 2.8932 | 2.837 | 2.780 | 2.720 | 2.659 | 2.595 |
14 | 6.2979 | 4.8567 | 4.2417 | 3.8919 | 3.6634 | 3.5014 | 3.3799 | 3.2853 | 3.2093 | 3.1469 | 3.0502 | 2.9493 | 2.8437 | 2.7888 | 2.732 | 2.674 | 2.614 | 2.552 | 2.487 |
15 | 6.1995 | 4.7650 | 4.1528 | 3.8043 | 3.5764 | 3.4147 | 3.2934 | 3.1987 | 3.1227 | 3.0602 | 2.9633 | 2.8621 | 2.7559 | 2.7006 | 2.644 | 2.585 | 2.524 | 2.461 | 2.395 |
16 | 6.1151 | 4.6867 | 4.0768 | 3.7294 | 3.5021 | 3.3406 | 3.2194 | 3.1248 | 3.0488 | 2.9862 | 2.8890 | 2.7875 | 2.6808 | 2.6252 | 2.568 | 2.509 | 2.447 | 2.383 | 2.316 |
17 | 6.0420 | 4.6189 | 4.0112 | 3.6648 | 3.4379 | 3.2767 | 3.1556 | 3.0610 | 2.9849 | 2.9222 | 2.8249 | 2.7230 | 2.6158 | 2.5598 | 2.502 | 2.442 | 2.380 | 2.315 | 2.247 |
18 | 5.9781 | 4.5597 | 3.9539 | 3.6083 | 3.3820 | 3.2209 | 3.0999 | 3.0053 | 2.9291 | 2.8664 | 2.7689 | 2.6667 | 2.5590 | 2.5027 | 2.445 | 2.384 | 2.321 | 2.256 | 2.187 |
19 | 5.9216 | 4.5075 | 3.9034 | 3.5587 | 3.3327 | 3.1718 | 3.0509 | 2.9563 | 2.8801 | 2.8172 | 2.7196 | 2.6171 | 2.5089 | 2.4523 | 2.394 | 2.333 | 2.270 | 2.203 | 2.133 |
20 | 5.8715 | 4.4613 | 3.8587 | 3.5147 | 3.2891 | 3.1283 | 3.0074 | 2.9128 | 2.8365 | 2.7737 | 2.6758 | 2.5731 | 2.4645 | 2.4076 | 2.349 | 2.287 | 2.223 | 2.156 | 2.085 |
21 | 5.8266 | 4.4199 | 3.8188 | 3.4754 | 3.2501 | 3.0895 | 2.9686 | 2.8740 | 2.7977 | 2.7348 | 2.6368 | 2.5338 | 2.4247 | 2.3675 | 2.308 | 2.246 | 2.182 | 2.114 | 2.042 |
22 | 5.7863 | 4.3828 | 3.7829 | 3.4401 | 3.2151 | 3.0546 | 2.9338 | 2.8392 | 2.7628 | 2.6998 | 2.6017 | 2.4984 | 2.3890 | 2.3315 | 2.272 | 2.210 | 2.145 | 2.076 | 2.003 |
23 | 5.7498 | 4.3492 | 3.7505 | 3.4083 | 3.1835 | 3.0232 | 2.9023 | 2.8077 | 2.7313 | 2.6682 | 2.5699 | 2.4665 | 2.3567 | 2.2989 | 2.239 | 2.176 | 2.111 | 2.041 | 1.968 |
24 | 5.7166 | 4.3187 | 3.7211 | 3.3794 | 3.1548 | 2.9946 | 2.8738 | 2.7791 | 2.7027 | 2.6396 | 2.5411 | 2.4374 | 2.3273 | 2.2693 | 2.209 | 2.146 | 2.080 | 2.010 | 1.935 |
25 | 5.6864 | 4.2909 | 3.6943 | 3.3530 | 3.1287 | 2.9685 | 2.8478 | 2.7531 | 2.6766 | 2.6135 | 2.5149 | 2.4110 | 2.3005 | 2.2422 | 2.182 | 2.118 | 2.052 | 1.981 | 1.906 |
26 | 5.6586 | 4.2655 | 3.6697 | 3.3289 | 3.1048 | 2.9447 | 2.8240 | 2.7293 | 2.6528 | 2.5896 | 2.4908 | 2.3867 | 2.2759 | 2.2174 | 2.157 | 2.093 | 2.026 | 1.954 | 1.878 |
27 | 5.6331 | 4.2421 | 3.6472 | 3.3067 | 3.0828 | 2.9228 | 2.8021 | 2.7074 | 2.6309 | 2.5676 | 2.4688 | 2.3644 | 2.2533 | 2.1946 | 2.133 | 2.069 | 2.002 | 1.930 | 1.853 |
28 | 5.6096 | 4.2205 | 3.6264 | 3.2863 | 3.0626 | 2.9027 | 2.7820 | 2.6872 | 2.6106 | 2.5473 | 2.4484 | 2.3438 | 2.2324 | 2.1735 | 2.112 | 2.048 | 1.980 | 1.907 | 1.829 |
29 | 5.5878 | 4.2006 | 3.6072 | 3.2674 | 3.0438 | 2.8840 | 2.7633 | 2.6686 | 2.5919 | 2.5286 | 2.4295 | 2.3248 | 2.2131 | 2.1540 | 2.092 | 2.028 | 1.959 | 1.886 | 1.807 |
30 | 5.5675 | 4.1821 | 3.5894 | 3.2499 | 3.0265 | 2.8667 | 2.7460 | 2.6513 | 2.5746 | 2.5112 | 2.4120 | 2.3072 | 2.1952 | 2.1359 | 2.074 | 2.009 | 1.940 | 1.866 | 1.787 |
40 | 5.4239 | 4.0510 | 3.4633 | 3.1261 | 2.9037 | 2.7444 | 2.6238 | 2.5289 | 2.4519 | 2.3882 | 2.2882 | 2.1819 | 2.0677 | 2.0069 | 1.943 | 1.875 | 1.803 | 1.724 | 1.637 |
60 | 5.2856 | 3.9253 | 3.3425 | 3.0077 | 2.7863 | 2.6274 | 2.5068 | 2.4117 | 2.3344 | 2.2702 | 2.1692 | 2.0613 | 1.9445 | 1.8817 | 1.815 | 1.744 | 1.667 | 1.581 | 1.482 |
120 | 5.1523 | 3.8046 | 3.2269 | 2.8943 | 2.6740 | 2.5154 | 2.3948 | 2.2994 | 2.2217 | 2.1570 | 2.0548 | 1.9450 | 1.8249 | 1.7597 | 1.690 | 1.614 | 1.530 | 1.433 | 1.310 |
inf | 5.0239 | 3.6889 | 3.1161 | 2.7858 | 2.5665 | 2.4082 | 2.2875 | 2.1918 | 2.1136 | 2.0483 | 1.9447 | 1.8326 | 1.7085 | 1.6402 | 1.566 | 1.484 | 1.388 | 1.268 | 1.000 |
В начало |
F-распределение для alpha=.01 .
df2/df1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 | 30 | 40 | 60 | 120 | INF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4052.181 | 4999.500 | 5403.352 | 5624.583 | 5763.650 | 5858.986 | 5928.356 | 5981.070 | 6022.473 | 6055.847 | 6106.321 | 6157.285 | 6208.730 | 6234.631 | 6260.649 | 6286.782 | 6313.030 | 6339.391 | 6365.864 |
2 | 98.503 | 99.000 | 99.166 | 99.249 | 99.299 | 99.333 | 99.356 | 99.374 | 99.388 | 99.399 | 99.416 | 99.433 | 99.449 | 99.458 | 99.466 | 99.474 | 99.482 | 99.491 | 99.499 |
3 | 34.116 | 30.817 | 29.457 | 28.710 | 28.237 | 27.911 | 27.672 | 27.489 | 27.345 | 27.229 | 27.052 | 26.872 | 26.690 | 26.598 | 26.505 | 26.411 | 26.316 | 26.221 | 26.125 |
4 | 21.198 | 18.000 | 16.694 | 15.977 | 15.522 | 15.207 | 14.976 | 14.799 | 14.659 | 14.546 | 14.374 | 14.198 | 14.020 | 13.929 | 13.838 | 13.745 | 13.652 | 13.558 | 13.463 |
5 | 16.258 | 13.274 | 12.060 | 11.392 | 10.967 | 10.672 | 10.456 | 10.289 | 10.158 | 10.051 | 9.888 | 9.722 | 9.553 | 9.466 | 9.379 | 9.291 | 9.202 | 9.112 | 9.020 |
6 | 13.745 | 10.925 | 9.780 | 9.148 | 8.746 | 8.466 | 8.260 | 8.102 | 7.976 | 7.874 | 7.718 | 7.559 | 7.396 | 7.313 | 7.229 | 7.143 | 7.057 | 6.969 | 6.880 |
7 | 12.246 | 9.547 | 8.451 | 7.847 | 7.460 | 7.191 | 6.993 | 6.840 | 6.719 | 6.620 | 6.469 | 6.314 | 6.155 | 6.074 | 5.992 | 5.908 | 5.824 | 5.737 | 5.650 |
8 | 11.259 | 8.649 | 7.591 | 7.006 | 6.632 | 6.371 | 6.178 | 6.029 | 5.911 | 5.814 | 5.667 | 5.515 | 5.359 | 5.279 | 5.198 | 5.116 | 5.032 | 4.946 | 4.859 |
9 | 10.561 | 8.022 | 6.992 | 6.422 | 6.057 | 5.802 | 5.613 | 5.467 | 5.351 | 5.257 | 5.111 | 4.962 | 4.808 | 4.729 | 4.649 | 4.567 | 4.483 | 4.398 | 4.311 |
10 | 10.044 | 7.559 | 6.552 | 5.994 | 5.636 | 5.386 | 5.200 | 5.057 | 4.942 | 4.849 | 4.706 | 4.558 | 4.405 | 4.327 | 4.247 | 4.165 | 4.082 | 3.996 | 3.909 |
11 | 9.646 | 7.206 | 6.217 | 5.668 | 5.316 | 5.069 | 4.886 | 4.744 | 4.632 | 4.539 | 4.397 | 4.251 | 4.099 | 4.021 | 3.941 | 3.860 | 3.776 | 3.690 | 3.602 |
12 | 9.330 | 6.927 | 5.953 | 5.412 | 5.064 | 4.821 | 4.640 | 4.499 | 4.388 | 4.296 | 4.155 | 4.010 | 3.858 | 3.780 | 3.701 | 3.619 | 3.535 | 3.449 | 3.361 |
13 | 9.074 | 6.701 | 5.739 | 5.205 | 4.862 | 4.620 | 4.441 | 4.302 | 4.191 | 4.100 | 3.960 | 3.815 | 3.665 | 3.587 | 3.507 | 3.425 | 3.341 | 3.255 | 3.165 |
14 | 8.862 | 6.515 | 5.564 | 5.035 | 4.695 | 4.456 | 4.278 | 4.140 | 4.030 | 3.939 | 3.800 | 3.656 | 3.505 | 3.427 | 3.348 | 3.266 | 3.181 | 3.094 | 3.004 |
15 | 8.683 | 6.359 | 5.417 | 4.893 | 4.556 | 4.318 | 4.142 | 4.004 | 3.895 | 3.805 | 3.666 | 3.522 | 3.372 | 3.294 | 3.214 | 3.132 | 3.047 | 2.959 | 2.868 |
16 | 8.531 | 6.226 | 5.292 | 4.773 | 4.437 | 4.202 | 4.026 | 3.890 | 3.780 | 3.691 | 3.553 | 3.409 | 3.259 | 3.181 | 3.101 | 3.018 | 2.933 | 2.845 | 2.753 |
17 | 8.400 | 6.112 | 5.185 | 4.669 | 4.336 | 4.102 | 3.927 | 3.791 | 3.682 | 3.593 | 3.455 | 3.312 | 3.162 | 3.084 | 3.003 | 2.920 | 2.835 | 2.746 | 2.653 |
18 | 8.285 | 6.013 | 5.092 | 4.579 | 4.248 | 4.015 | 3.841 | 3.705 | 3.597 | 3.508 | 3.371 | 3.227 | 3.077 | 2.999 | 2.919 | 2.835 | 2.749 | 2.660 | 2.566 |
19 | 8.185 | 5.926 | 5.010 | 4.500 | 4.171 | 3.939 | 3.765 | 3.631 | 3.523 | 3.434 | 3.297 | 3.153 | 3.003 | 2.925 | 2.844 | 2.761 | 2.674 | 2.584 | 2.489 |
20 | 8.096 | 5.849 | 4.938 | 4.431 | 4.103 | 3.871 | 3.699 | 3.564 | 3.457 | 3.368 | 3.231 | 3.088 | 2.938 | 2.859 | 2.778 | 2.695 | 2.608 | 2.517 | 2.421 |
21 | 8.017 | 5.780 | 4.874 | 4.369 | 4.042 | 3.812 | 3.640 | 3.506 | 3.398 | 3.310 | 3.173 | 3.030 | 2.880 | 2.801 | 2.720 | 2.636 | 2.548 | 2.457 | 2.360 |
22 | 7.945 | 5.719 | 4.817 | 4.313 | 3.988 | 3.758 | 3.587 | 3.453 | 3.346 | 3.258 | 3.121 | 2.978 | 2.827 | 2.749 | 2.667 | 2.583 | 2.495 | 2.403 | 2.305 |
23 | 7.881 | 5.664 | 4.765 | 4.264 | 3.939 | 3.710 | 3.539 | 3.406 | 3.299 | 3.211 | 3.074 | 2.931 | 2.781 | 2.702 | 2.620 | 2.535 | 2.447 | 2.354 | 2.256 |
24 | 7.823 | 5.614 | 4.718 | 4.218 | 3.895 | 3.667 | 3.496 | 3.363 | 3.256 | 3.168 | 3.032 | 2.889 | 2.738 | 2.659 | 2.577 | 2.492 | 2.403 | 2.310 | 2.211 |
25 | 7.770 | 5.568 | 4.675 | 4.177 | 3.855 | 3.627 | 3.457 | 3.324 | 3.217 | 3.129 | 2.993 | 2.850 | 2.699 | 2.620 | 2.538 | 2.453 | 2.364 | 2.270 | 2.169 |
26 | 7.721 | 5.526 | 4.637 | 4.140 | 3.818 | 3.591 | 3.421 | 3.288 | 3.182 | 3.094 | 2.958 | 2.815 | 2.664 | 2.585 | 2.503 | 2.417 | 2.327 | 2.233 | 2.131 |
27 | 7.677 | 5.488 | 4.601 | 4.106 | 3.785 | 3.558 | 3.388 | 3.256 | 3.149 | 3.062 | 2.926 | 2.783 | 2.632 | 2.552 | 2.470 | 2.384 | 2.294 | 2.198 | 2.097 |
28 | 7.636 | 5.453 | 4.568 | 4.074 | 3.754 | 3.528 | 3.358 | 3.226 | 3.120 | 3.032 | 2.896 | 2.753 | 2.602 | 2.522 | 2.440 | 2.354 | 2.263 | 2.167 | 2.064 |
29 | 7.598 | 5.420 | 4.538 | 4.045 | 3.725 | 3.499 | 3.330 | 3.198 | 3.092 | 3.005 | 2.868 | 2.726 | 2.574 | 2.495 | 2.412 | 2.325 | 2.234 | 2.138 | 2.034 |
30 | 7.562 | 5.390 | 4.510 | 4.018 | 3.699 | 3.473 | 3.304 | 3.173 | 3.067 | 2.979 | 2.843 | 2.700 | 2.549 | 2.469 | 2.386 | 2.299 | 2.208 | 2.111 | 2.006 |
40 | 7.314 | 5.179 | 4.313 | 3.828 | 3.514 | 3.291 | 3.124 | 2.993 | 2.888 | 2.801 | 2.665 | 2.522 | 2.369 | 2.288 | 2.203 | 2.114 | 2.019 | 1.917 | 1.805 |
60 | 7.077 | 4.977 | 4.126 | 3.649 | 3.339 | 3.119 | 2.953 | 2.823 | 2.718 | 2.632 | 2.496 | 2.352 | 2.198 | 2.115 | 2.028 | 1.936 | 1.836 | 1.726 | 1.601 |
120 | 6.851 | 4.787 | 3.949 | 3.480 | 3.174 | 2.956 | 2.792 | 2.663 | 2.559 | 2.472 | 2.336 | 2.192 | 2.035 | 1.950 | 1.860 | 1.763 | 1.656 | 1.533 | 1.381 |
inf | 6.635 | 4.605 | 3.782 | 3.319 | 3.017 | 2.802 | 2.639 | 2.511 | 2.407 | 2.321 | 2.185 | 2.039 | 1.878 | 1.791 | 1.696 | 1.592 | 1.473 | 1.325 | 1.000 |
В начало |
(c) Copyright StatSoft, Inc., 1984-1998
STATISTICA является торговой маркой StatSoft, Inc.