Карты контроля качества



Основные задачи

При организации любого производственного процесса возникает задача установки пределов характеристик изделия, в рамках которых произведенная продукция удовлетворяет своему предназначению. Вообще говоря, существует два "врага" качества продукции: (1) отклонения от плановых спецификаций и (2) слишком большой разброс реальных характеристик изделий (относительно плановых спецификаций). На ранних стадиях отладки производственного процесса для оптимизации этих двух показателей качества часто используются методы планирования эксперимента (см. Планирование эксперимента). Методы, содержащиеся в модуле "Контроль качества", предназначены для построения процедур контроля качества продукции в процессе ее производства, т.е. текущего контроля качества. За детальным описанием принципов построения контрольных карт и примерам обратитесь к работам Buffa (1972), Duncan (1974), Grant and Leavenworth (1980), Juran (1962), Juran and Gryna (1970), Montgomery (1985, 1991), Shirland (1993) или Vaughn (1974). В качестве превосходных вводных курсов, построенных на основе подхода "как - чтобы", можно указать монографии Hart and Hart (1989) и Pyzdek (1989), а также изданные на немецком языке курсы Rinne and Mittag (1995) и Mittag (1993). 

В начало


Общий подход

Общий подход к текущему контролю качества достаточно прост. В процессе производства проводятся выборки изделий заданного объема. После этого на специально разлинованной бумаге строятся диаграммы изменчивости выборочных значений плановых спецификаций в этих выборках и рассматривается степень их близости к заданным значениям. Если диаграммы обнаруживают наличие тренда выборочных значений или оказывается, что выборочные значения находятся вне заданных пределов, то считается, что процесс вышел из-под контроля, и предпринимаются необходимые действия для того, чтобы найти причину его разладки. Иногда такие специально разлинованные бумаги называют контрольными картами Шуэрта (в честь W. A. Shewhart, который общепризнанно считается первым, применившим на практике описываемые здесь методы анализа; см. Shewhart, 1931).

Интерпретация контрольных карт. В компьютерном варианте контрольных карт наиболее часто встречается ситуация, когда на экране находятся две карты (и две гистограммы), одна из них называется Х-картой, а другая - R-картой.

X-карта и R-карта

В обеих контрольных картах по горизонтальной оси откладываются номера соответствующих выборок; по вертикальной оси в случае X -карты отложены выборочные средние исследуемых характеристик, а в случае R-карты - размахи соответствующих выборок. Пусть, например, производятся контрольные измерения диаметра поршневых колец, изготавливаемых на вашем предприятии. Тогда центральная линия на X -карте будет соответствовать размеру, используемому в качестве стандарта (например, установленному диаметру кольца в миллиметрах), в то время как центральная линия R-карты будет соответствовать приемлемому (т.е. находящемуся в пределах плановой спецификации) размаху диаметра поршневого кольца в выборках; таким образом, последняя контрольная карта представляет собой карту изменчивости процесса (чем больше изменчивость, тем больше диапазон отклонения от стандарта). Кроме центральной линии, на карте обычно присутствуют две дополнительные горизонтальные прямые, обозначающие верхний и нижний контрольные пределы (ВКП и НКП соответственно). Принципы определения этих линий обсуждаются ниже. Обычно нанесенные на карты отдельные точки соответствуют выборочным значениям и соединяются прямыми линиями. Если результирующая кривая на графике выходит за верхний или нижний контрольный предел или ее конфигурация выражает определенную тенденцию поведения для следующих друг за другом выборок (см. Критерий серий), то это рассматривается как указание на существование проблем с качеством.

В начало


Установка контрольных пределов

Несмотря на то, что можно достаточно произвольно определить момент разладки производственного процесса (например, при выходе соответствующих значений за границы верхних и нижних контрольных пределов), обычной практикой является применение статистических методов для определения этого момента. В разделе Элементарные понятия статистики обсуждаются свойства выборочного распределения, а также дается сводка характеристик нормального распределения. Метод установления верхнего и нижнего контрольных пределов представляет собой прямое следствие применения  описанных в этом разделе принципов.

Пример. Предположим, вы контролируете среднее значение некоторой величины - например, диаметра поршневых колец. Пусть среднее значение диаметров и дисперсия в процессе производства не меняются. Тогда выборочные средние, полученные для последовательных выборок, будут распределены нормально относительно истинного среднего. Более того, не вдаваясь в тонкости, связанные с выводом формул, можно заключить (согласно центральной предельной теореме и сделанному предположению о нормальности выборочных средних размеров колец; см, например, работу Hoyer and Ellis, 1996), что стандартное отклонение распределения выборочных средних будет равно сигме (стандартному отклонению отдельных наблюдений или измерений диаметра отдельных колец), деленному на квадратный корень из n (n - размер выборки). Следовательно, примерно 95% значений выборочных средних попадут в интервал   ±1.96 *сигма/квадратный корень из n (обсуждение соответствующих свойств нормального распределения проводится в разделе Элементарные понятия статистики). На практике обычно заменяют 1.96 на 3 (при этом в интервал попадают приблизительно 99% выборочных средних) и определяют верхний и нижний контрольные пределы как плюс-минус 3 сигма соответственно. 

Общий случай. Описанный выше частный принцип установления контрольных пределов применяется во всех типах контрольных карт. После выбора контролируемой характеристики (например, стандартного отклонения) оценивается ее ожидаемая изменчивость в выборках того размера, который будет использоваться в контролируемой процедуре. Затем с помощью полученных оценок изменчивости устанавливают контрольные пределы карты.

В начало


Наиболее часто используемые типы контрольных карт

Классификация типов контрольных карт часто осуществляется согласно типам величин, которые выбраны для отслеживания характеристик качества. Так, различают контрольные карты для непрерывных переменных и контрольные карты по альтернативному признаку. В частности, для контроля по непрерывному признаку обычно строятся следующие контрольные карты:

Для контроля качества продукции по альтернативному признаку обычно применяются следующие типы контрольных карт:

Все перечисленные выше типы карт допускают возможность построения кратких карт для производственных серий (краткие контрольные карты) и контрольных карт для нескольких процессов (многопоточные групповые карты).

В начало


Краткие контрольные карты

Краткая контрольная карта (контрольная карта для кратких производственных серий) представляет собой график наблюдаемых значений характеристик качества (значений непрерывной переменной или альтернативного признака) для нескольких частей процесса, причем все значения контролируемой характеристики наносятся на одну и ту же карту. Разработка кратких контрольных карт стала следствием необходимости адаптации контрольных карт к тем ситуациям, когда требуется выполнить несколько десятков измерений контролируемой характеристики процесса, прежде чем вычислить контрольные пределы. Часто данное требование выполняется с трудом на тех стадиях производственного процесса, в ходе которых изготавливается ограниченное (малое) число деталей, которые необходимо подвергнуть измерениям.

Так, например, на целлюлозно-бумажном комбинате процесс может быть организован следующим образом: выпускается только три-четыре больших рулона бумаги определенного сорта (часть процесса), а затем переходят к выпуску бумаги другого сорта. Однако, если измерения переменных (таких, например, как толщина бумаги или альтернативных признаков, таких, как наличие/отсутствие пятен) производятся для нескольких десятков рулонов, скажем, десяти различных сортов, то контрольные пределы для переменной "толщина бумаги" и признака "наличие/отсутствие пятен" могут быть вычислены на основе преобразованных значений (в рамках краткой производственной серии). Более точно, эти преобразования заключаются в таком изменении масштаба контролируемых переменных, при котором амплитуды их изменения в различных производственных сериях (различных частях процесса) будут сравнимыми. Контрольные пределы, рассчитанные по этим преобразованным значениям, могут применяться в дальнейшем при контроле толщины бумаги и наличия/отсутствия пятен, вне зависимости от сорта выпускаемой бумаги. Для того чтобы определить, произошла разладка процесса или нет, могут быть использованы статистические процедуры контроля процесса. Этими процедурами можно воспользоваться также для постоянного контроля производства и разработки способов постоянного улучшения качества.

Более подробное описание кратких карт контроля качества можно найти в работах Bothe (1988), Johnson (1987) или Montgomery (1991).

Краткие карты для переменных

Номинальная карта, карта плановых спецификаций. Существует несколько типов кратких контрольных карт. Наиболее часто используются следующие карты: номинальная карта и карта плановых спецификаций. При построении данных карт преобразование наблюдаемых значений контролируемой характеристики в различных частях процесса производится путем вычитания определенной постоянной из измерений (для наблюдений каждой части используется своя постоянная). В качестве таких постоянных могут выступать как значения номинала для соответствующих частей процесса (результатом такого подхода будет номинальная краткая карта), так и плановые спецификации, рассчитанные по "историческим" средним контролируемой характеристики для каждой части (краткая X-карта плановых спецификаций и краткая R-карта плановых спецификаций). Так, например, сравнение внутренних диаметров поршневых колец для различных блоков мотора, находящихся в производстве, только тогда может быть обоснованно, когда до проведения сравнения из измерений диаметров будут вычтены средние разности между внутренними диаметрами поршневых колец для моторов различного размера (для определения непротиворечивости значений диаметров). Такое сравнение становится возможным при построении краткой номинальной карты или краткой карты плановых спецификаций. Заметим, что при построении номинальной карты и карты плановых спецификаций делается предположение о равенстве дисперсий различных частей процесса, чтобы применение рассчитанных по общей оценке сигма процесса контрольных пределов можно было считать корректным.

Стандартизованная краткая карта. Если изменчивость различных частей процесса нельзя считать одинаковой, то прежде чем нанести на одну карту данные, относящиеся к разным частям процесса,  необходимо провести еще одно преобразование. При построении карты данного типа это преобразование заключается в следующем: вычисляются отклонения выборочных средних контролируемой характеристики от средних для соответствующих частей процесса (т.е. от номинальных значений или плановых спецификаций для частей), далее для каждой части процесса эти отклонения делятся на постоянные, пропорциональные изменчивости соответствующих частей. Так, в случае кратких X-карты и R-карты, для построения точек графика X-карты вначале из каждого выборочного среднего вычитается определенная постоянная, соответствующая рассматриваемой части процесса (т.е. среднее этой части процесса или значение номинала для данной части), затем эта разность делится на другую постоянную - например на средний размах соответствующей части процесса. В результате таких преобразований масштабы выборочных средних различных частей процесса станут сравнимыми.

Краткие карты по альтернативному признаку

В случае контрольных карт по альтернативному признаку (C-, U-, Np- или P-карт) оценка изменчивости процесса (доля, частота и т.д.) зависит от среднего значения процесса (средней доли, средней относительной частоты и т.д.) - так, например, стандартное отклонение доли p равно квадратному корню из p*(1-p)/n). Следовательно, для альтернативных признаков могут быть построены только стандартизованные краткие карты. К примеру, точки краткой P-карты находятся вычитанием из соответствующих выборочных значений долей p средних p для части процесса, с последующим делением результата на стандартное отклонение средних p.

В начало


Многопоточные групповые карты

Групповая контрольная карта дает возможность нанести данные для нескольких потоков наблюдаемых значений непрерывной переменной или альтернативного признака (характеристик качества) на одну и ту же карту. Это упрощает интерпретацию карты при одновременном управлении большим числом процессов или их характеристик. Здесь термином "потоки процесса" могут обозначаться данные, полученные для различных станков, сборочных линий, операторов и так далее. Все эти данные могут быть нанесены на одну контрольную карту.

При построении групповой X-карты для каждой из выборок с измерениями контролируемой характеристики на карту наносится две точки, в результате чего на графике образуются две линии. Верхняя из них представляет собой график наиболее высоких средних значений каждой выборки для всех нанесенных на карту потоков переменных или альтернативных признаков, а нижняя - подобный график наименьших средних значений каждой выборки. Для каждой выборки верхняя и нижняя точка представляют собой максимальное и минимальное средние всех нанесенных на карту потоков переменных или альтернативных признаков. Если эти экстремальные значения не выходят за рамки заданных контрольных пределов, очевидно, что все остальные средние также будут находиться в области, ограниченной контрольными пределами. Следовательно, с помощью групповой X-карты, можно быстро определить, не началась ли разладка процесса в одном или нескольких потоках процесса или контролируемых характеристиках, не переходя к проверке всех измерений подряд.

В групповых R-, S- или S**2-картах для переменных, как и в групповых C-, U-, Np- или P-картах  для альтернативных признаков, две точки, наносимые на карту для каждой выборки, соответствуют минимальному и максимальному размаху, стандартному отклонению и т.п. от средних переменных или альтернативных признаков, измеряемых для каждой выборки в нескольких потоках. Как и в случае групповой X-карты, сравнение этих экстремальных значений с заданными контрольными пределами   дает возможность быстро определить, не началась ли разладка потока процесса или его контролируемой характеристики.

Групповая карта для одной части процесса называется стандартной групповой картой или, обычно, просто групповой картой. Групповые карты для нескольких частей процесса называются групповыми краткими картами. Для построения групповых кратких карт используется та же процедура, что и для стандартных групповых карт; единственное их отличие от стандартных состоит в том, что точки на график наносятся только после того, как будут выполнены все преобразования данных в пределах отдельных частей процесса.

В начало


Неравные объемы выборок

При построении на контрольной карте графика для выборок неодинакового объема контрольные пределы, находящиеся по обе стороны от центральной линии (плановой спецификации), не могут быть изображены прямыми линиями. Так, например, вернувшись к формуле сигма/квадратный корень из n, которая была введена для вычисления контрольных пределов X-карты, можно видеть, что неравные значения n приведут к получению различных контрольных пределов для разных объемов выборки. Существует три способа, позволяющих справиться с такой ситуацией.

Средние объемы выборок. В том случае, когда желательно оставить контрольные пределы в виде прямых линий (например, чтобы облегчить чтение карты и ее использование в презентациях), можно найти среднее значение объема выборки n по всем рассматриваемым выборкам и установить контрольные пределы на основе полученного среднего объема выборки. Эту процедуру нельзя назвать "точной". И все же, пока объемы выборок несильно отличаются друг от друга, применение данного метода можно считать вполне адекватным.

Переменные контрольные пределы. С другой стороны, для каждой выборки можно отдельно определить контрольные пределы на основе ее объема. При таком подходе будут получены переменные контрольные пределы. На графике такие пределы будут изображены ступенчатой линией. Этот метод позволяет получить точные контрольные пределы для каждой из использующихся выборок. Однако при этом теряется простота и наглядность контрольных пределов, отмечаемых на карте прямой линией.

Стабилизированная (нормализованная) карта. Наилучший вариант - изображающиеся прямыми линиями контрольные пределы, которые при этом точны - может быть получен путем стандартизации контролируемой численной характеристики (среднего значения, доли и т.д.) согласно единицам сигмы. При этом контрольные пределы изображаются прямыми линиями, но расположение точек выборочных значений на графике определяется не только значениями контролируемой характеристики, но и объемом n соответствующих выборок. Недостаток данного метода заключается в следующем: по вертикальной оси контрольной карты (оси Y) величины выражаются в единицах сигма, а не в первоначальных единицах измерения контролируемой характеристики, поэтому их нельзя считывать по выводимому на графике значению. Так, например, выборочная величина со значением 3 отстоит на 3 сигма от плановой спецификации. Для перевода данного значения в первоначальные единицы измерения придется выполнить некоторый объем вычислений.

В начало


Контрольные карты для непрерывных переменных и контрольные карты по альтернативному признаку

Иногда инженеру, занимающемуся контролем качества, приходится выбирать между применением контрольной карты для непрерывных переменных и контрольной карты по альтернативному признаку.

Преимущества контрольных карт по альтернативному признаку. Преимущество контрольных карт по альтернативному признаку состоит в возможности быстро получить общее представление о различных аспектах качества анализируемого изделия; то есть, на основании различных критериев качества инженер может сразу принять или забраковать продукцию. Далее, контрольные карты по альтернативному признаку иногда позволяют обойтись без применения дорогих точных приборов и требующих значительных затрат времени измерительных процедур. Кроме того, этот тип контрольных карт более понятен менеджерам, которые не разбираются в тонкостях методов контроля качества. Таким образом, с помощью таких карт можно более убедительно продемонстрировать руководству наличие проблем с качеством изделий.

Преимущества контрольных карт для непрерывных переменных. Контрольные карты для непрерывных переменных обладают большей чувствительностью, чем контрольные карты по альтернативному признаку (см. Montgomery, 1985, стр. 203). Благодаря этому, контрольные карты для непрерывных переменных могут указать на существование проблемы ухудшения качества, прежде чем в потоке продукции появятся настоящие бракованные изделия, выделяемые с помощью контрольной карты по альтернативному признаку. В работе Montgomery (1985) автор называет контрольные карты для непрерывных переменных основными индикаторами  ухудшения качества, которые предупреждают об этих проблемах задолго до того, как в процессе производства резко возрастет доля бракованных изделий.

 

Контрольные карты для отдельных наблюдений

Кроме выборок, состоящих из нескольких наблюдений, контрольные карты для переменных могут быть построены также для отдельных наблюдений, полученных в ходе производственного процесса. Иногда такой подход необходим в силу дороговизны, неудобства или невозможности анализа выборок, состоящих из ряда наблюдений. Примером может служить ситуация, когда число претензий потребителей или случаев возврата изделий может быть получено только по итогам месяца, тем не менее, существует необходимость в проведении текущего анализа этих данных для выявления ухудшения качества продукции. Другим широко встречающимся примером применения карт данного типа является проверка автоматическим тестирующим прибором каждой единицы произведенной продукции. В этом случае обычно стремятся обнаружить небольшие отклонения качества выпускаемой продукции (например, постепенное ухудшение качества, обусловленное износом  оборудования). При этом наилучшее применения находят контрольные карты типа CUSUM, MA, и EWMA (контрольные карты для накопленных сумм и взвешенных средних).

В начало


Разладка процесса: критерии серий

Как уже было отмечено ранее в вводной части, когда точка на контрольной карте, соответствующая выборочному значению контролируемой характеристики (например, среднему значению в X-карте) оказывается вне ограниченной контрольными переделами области, это дает основания предполагать, что производственный процесс разладился. Далее, при этом необходимо отслеживать появление систематической тенденции в расположении точек (например, выборочных средних) на контрольной карте, так как наличие такой тенденции может служить свидетельством тренда среднего значения контролируемого процесса.  Эти критерии иногда называют критериями серий типа AT&T (см. AT&T, 1959) или критериями против альтернатив специального вида (см. Nelson, 1984, 1985; Grant and Leavenworth, 1980; Shirland, 1993). Термин специальные альтернативы, как альтернатива случайным или общим причинам, был использован в работе Шуэрта (Shewhart) для того, чтобы сделать разграничение между нормальным производственным процессом, вариации в котором появляются только в силу действия случайных причин, и вышедшим из-под контроля процессом , в котором вариации характеристик обусловлены некоторыми неслучайными, то есть специальными факторами (см. Montgomery, 1991, стр. 102).

Как и обсуждавшиеся ранее контрольные пределы, выраженные в единицах сигмы, критерии серий имеют в своей основе "статистическое" обоснование. Так, например, вероятность того, что любое выборочное среднее значение для X-карты окажется выше центральной линии, равна 0.5 при следующих условиях: (1) производственный процесс находится в нормальном состоянии (т.е. центральная линия проведена через значение, равное среднему контролируемой характеристики генеральной совокупности изделий), (2) средние значения следующих друг за другом выборок независимы (т.е. отсутствует автокорреляция) и (3) выборочные средние значения контролируемой характеристики распределены по нормальному закону. Проще говоря, при таких условиях для выборочного среднего значения шансы попасть выше или ниже центральной линии составляют 50 на 50. Поэтому вероятность того, что два следующих друг за другом выборочных средних окажутся выше центральной линии, будет равна 0.5, умноженному на 0.5 , т.е. 0.25.

Соответственно, вероятность того, что выборочные средние девяти последующих выборок (или серия из 9 точек контрольной карты) окажется с одной стороны от центральной линии, составит 0.59 = .00195. Заметим, что это значение приблизительно равно вероятности того, что отдельное выборочное среднее значение не попадет в интервал, ограниченный контрольными пределами в 3 сигма (при условии нормального распределения выборочных средних и нормальности производственного процесса). Поэтому, в качестве еще одного индикатора разладки производственного процесса можно рассматривать ситуацию, когда девять последовательных выборочных средних находятся с одной стороны от центральной линии. Со статистической интерпретацией других, более сложных критериев можно ознакомиться в работе Duncan (1974).

Зоны A, B, C. Обычно для задания критериев поиска серий область контрольной карты над центральной линией и под ней делится на три "зоны".

Зоны для критерия серий

По умолчанию, зона А определяется как область, расположенная на расстоянии от 2 до 3 сигма по обе стороны от центральной линии. Зона В определяется как область, отстоящая от центральной линии на расстояние от 1 до 2 сигма, а зона С - как область, расположенная между центральной линией по обе ее стороны и ограниченная прямой, проведенной на расстоянии одной сигма от центральной линии.

9 точек в зоне С или за ее пределами (с одной стороны от центральной линии). Если этот критерий выполняется (т.е. если на контрольной карте обнаружено такое расположение точек), то делается вывод о возможном изменении среднего значения процесса в целом. Заметим, что здесь делается предположение о симметричности распределения исследуемых характеристик качества вокруг среднего значения процесса на графике. Но это условие не выполняется, например, для R-карт, S-карт и большинства карт по альтернативному признаку. Тем не менее, данный критерий полезен для того, чтобы указать занимающемуся контролем качества инженеру на присутствие потенциальных трендов процесса. Например, здесь стоит обратить внимание на последовательные выборочные значения с изменчивостью ниже среднего, так как с их помощью можно догадаться, каким образом снизить вариацию процесса.

6 точек монотонного роста или снижения, расположенные подряд. Выполнение этого критерия сигнализирует о сдвиге среднего значения процесса. Часто такой сдвиг обусловлен изнашиванием инструмента, ухудшением технического обслуживания оборудования, повышением квалификации рабочего и т.п. (Nelson, 1985).

14 точек подряд в "шахматном" порядке (через одну над и под центральной линией). Если этот критерий выполняется, то это указывает на действие двух систематически изменяющихся причин, которое приводит к получению различных результатов. Например, в данном случае может иметь место использование двух альтернативных поставщиков продукции или отслеживание двух различных альтернативных воздействий.

2 из 3-х расположенных подряд точек попадают в зону A или выходят за ее пределы. Этот критерий служит "ранним предупреждением" о начинающейся разладке процесса. Заметим, что для данного критерия вероятность получения ошибочного решения (критерий выполняется, однако процесс находится в нормальном режиме) в случае Х-карт составляет приблизительно 2 %.

4 из 5-ти расположенных подряд точек попадают в зону B или за ее пределы. Как и предыдущий, этот критерий может рассматриваться в качестве индикатора - "раннего предупреждения" о возможной разладке процесса. Процент принятия ошибочного решения о наличии разладки процесса для этого критерия также находится на уровне около 2%.

15 точек подряд попадают в зону C (по обе стороны от центральной линии). Выполнение этого критерия указывает на более низкую изменчивость по сравнению с ожидаемой (на основании выбранных контрольных пределов).

8 точек подряд попадают в зоны B, A или выходят за контрольные пределы, по обе стороны от центральной линии (без попадания в зону C). Выполнение этого критерия служит свидетельством того, что различные выборки подвержены влиянию различных факторов, в результате чего выборочные средние значения оказываются распределенными по бимодальному закону. Такая ситуация может сложиться, например, когда отмечаемые на Х-карте выборки изделий были произведены двумя различными станками, один из которых производит изделия со значением контролируемой характеристики выше среднего, а другой - ниже.

В начало


Операционные характеристики (ОХ - кривые)

Стандартные карты контроля качества обычно дополняются графиком, который носит название операционная характеристика (ОХ-кривая). При использовании стандартных контрольных карт для непрерывных переменных или для дискретных переменных возникает вопрос: насколько чувствительна используемая процедура контроля качества?   Точнее говоря, какова вероятность не обнаружить выборочную точку анализируемой характеристики (например, среднего значения на Х-карте) вне контрольных пределов (т.е. посчитать процесс производства текущим "в нормальном режиме"), когда, на самом деле, произошел сдвиг процесса на некоторую величину? Обычно эту вероятность называют вероятностью бета-ошибки ( ). Таким образом, - это вероятность ошибочно принять, что процесс (его характеристики - среднее значение, средняя процентная доля, средняя частота обнаружения дефектов и т.д.) находится в нормальном режиме. Необходимо отметить, что понятие операционной характеристики относится к вероятностям принятия ошибочного решения только для критериев, связанных с выходом выборочной точки за контрольные пределы, а не для рассмотренных выше критериев серий.

Операционная характеристика

Кривые операционных характеристик оказываются исключительно полезным средством при оценивании мощности применяемой процедуры контроля качества. На практике решение об установлении объема контрольных выборок должно опираться не только на стоимость выполнения контрольной операции (т.е. на расходы в расчете на одно включенное в выборку изделие), но также на затраты, которые повлечет за собой не обнаруженное ухудшение качества. С помощью ОХ-кривых инженер может оценить вероятности необнаружения отклонений качества контролируемой продукции на определенную величину.

Индексы пригодности процесса

В случае контрольных карт для непрерывных переменных часто возникает необходимость включить в итоговый вывод результатов анализа так называемые индексы пригодности процесса. Коротко говоря, индексы пригодности процесса выражают (в виде отношения), какая часть деталей или изделий, производимых в рамках текущего производственного процесса, по своим характеристикам попадает в определенные технологами пределы (в частности, в инженерные допуски).

К примеру, так называемый индекс Cp находится следующим образом:

Cp = (ВГС-НГС)/(6*сигма)

где сигма представляет собой оценку стандартного отклонения процесса, ВГС и НГС - соответственно верхнюю и нижнюю границы плановой спецификации (инженерные допуски). Если распределение контролируемой характеристики качества или переменной (например, размер поршневых колец) подчиняется нормальному закону, и процесс абсолютно точно центрирован (т.е. среднее значение процесса соответствует положению центральной линии на контрольной карте), то данный индекс может интерпретироваться как та часть стандартной кривой нормального распределения (ширина процесса), которая находится внутри границ инженерных допусков. В случае нецентрированного процесса, вместо рассмотренного выше индекса используется уточненный индекс Cpk . Для "пригодного" процесса индекс Cp должен быть больше 1. Это означает, что для того, чтобы можно было ожидать попадание более 99% всех выпущенных деталей или изделий в рамки приемлемых инженерных спецификаций, величина интервала между контрольными пределами плановых спецификаций должна превышать 6 сигма. Более подробно обсуждение этого и других индексов приводится в модуле Анализ процессов.

В начало


Другие специализированные типы контрольных карт

Далее рассматривается ряд других наиболее широко используемых методов и соответствующих им типов контрольных карт - "рабочих лошадок" контроля качества. Однако, с приходом недорогих персональных компьютеров, все большую популярность приобретают процедуры, требующие проведения большего объема вычислений.

X-карты для данных с негауссовским распределением. Контрольные пределы для стандартных X-карт вычисляются, исходя из предположения о приблизительно нормальном распределении выборочных средних. Следовательно, для отдельных наблюдений в выборках нормальность распределения не обязательна, так как. по мере увеличения объема выборок распределение выборочных средних будет приближаться к нормальному (см. обсуждение центральной предельной теоремы в разделе Элементарные понятия статистики. Однако необходимо отметить, что при построении R-карты, S-карты и S**2-карты предполагается, что отдельные наблюдения обладают нормальным распределением). В монографии Шуарта (Shewhart, 1931) автор экспериментирует с различными негауссовскими распределениями отдельных наблюдений и оценивает полученные в результате распределения средних для выборок объема 4. В результате было обнаружено, что, на самом деле, до тех пор, пока распределение отдельных наблюдений в выборках является приблизительно нормальным, можно применять вычисленные на основе нормального распределения стандартные контрольные пределы. Введение в данный вопрос и обсуждение предположений о распределении данных при контроле качества путем построения контрольных карт можно найти в работе Hoyer and Ellis, 1996.

Однако, как отмечено в работе Ryan (1989), при малых объемах выборок и сильной асимметрии распределения наблюдений, построенные по таким данным стандартные контрольные пределы приводят как к получению большого числа ложных сигналов тревоги (т.е. росту вероятности альфа-ошибки), так и увеличению числа случаев, когда при фактически произошедшей разладке процесс продолжает считаться контролируемым (росту вероятности бета-ошибки). В программе STATISTICA существует возможность расчета контрольных пределов для X-карт (а также индексов пригодности процесса) на основе так называемых  кривых Джонсона  (Johnson, 1949), с помощью которых аппроксимируется асимметрия   и  эксцесс  большой группы негауссовских распределений (см. также раздел  Подгонка распределений  в модуле  Анализ процессов). Негауссовские X-карты рекомендуется применять в том случае, когда распределение выборочных средних обладает явной асимметрией или является негауссовским. 

Контрольная карта T**2 Хотеллинга. Когда исследуется несколько взаимосвязанных характеристик качества (заданных в виде нескольких переменных), для всех средних значений можно построить общий график, воспользовавшись для этого многомерной статистикой Хотеллинга T**2 (впервые предложена в работе Hotelling, 1947).

Карта Хотеллинга

Контрольная карта накопленных сумм (CUSUM-карта). Контрольная карта типа CUSUM была впервые предложена в работе Page (1954). Обсуждение использующихся при ее построении математических принципов можно найти в работах Ewan (1963), Johnson (1961), а также Johnson and Leone (1962).

CUSUM-карта

Если строить график накопленной суммы отклонений от плановых спецификаций для следующих друг за другом выборочных средних, то даже малые постоянные сдвиги среднего значения процесса постепенно приведут к накоплению ощутимой суммы отклонений. Поэтому данный тип контрольных карт особенно хорошо подходит для обнаружения малых постоянных сдвигов процесса, которые могут оказаться незамеченными при применении Х-карты. Например, когда из-за износа оборудования процесс медленно "выскальзывает" из-под контроля, в результате чего размеры изделий превышают плановые спецификации (или становятся ниже их), при применении контрольной карты данного типа будет получен монотонно растущий (или снижающийся) график накопленной суммы отклонений от плановых спецификаций.

Для установления контрольных пределов в CUSUM-картах в работе Barnhard (1959) было предложено использовать так называемую V-маску, которая наносится на график после построения точки для последней выборки (самой правой точки на графике). Можно считать, что V-маска представляет собой верхний и нижний контрольный пределы для накопленных сумм. Однако, вместо того, чтобы быть параллельными центральной линии, эти прямые сходятся под определенным углом вправо, образуя в результате фигуру, похожую на лежащую букву V. Если график накопленной суммы пересекает любую из линий маски, то процесс считается вышедшим из-под контроля.

Контрольная карта скользящего среднего (MA-карта). Возвращаясь к примеру с размером поршневых колец, предположим, что наибольший интерес для инженера по контролю качества представляет обнаружение малых трендов последовательных выборочных средних. Например, необходимо обнаружить износ оборудования, который приводит к медленному, но постоянному ухудшению качества (т.е. отклонению размеров изделий от требований плановой спецификации. Одним из способов отслеживания таких трендов и обнаружения незначительных постоянных сдвигов среднего значения процесса является построение описанной выше CUSUM-карты. Другой способ состоит в использовании одной из схем установления весов данных, согласно которой осуществляется суммирование нескольких средних. При движении такого взвешенного среднего вдоль выборочных точек получается контрольная карта скользящего среднего, приведення на следующем рисунке.

Карта скользящего среднего

Контрольная карта экспоненциально взвешенного скользящего среднего (EWMA-карта). Идея построения скользящих средних для последовательных (соседних) выборочных значений может быть обобщена. В принципе, чтобы обнаружить тренд, необходимо присвоить веса следующим друг за другом выборочным значениям, получив таким образом скользящее среднее. Однако, вместо простого арифметического скользящего среднего, можно найти геометрическое скользящее среднее (соответствующая контрольная карта показана на следующем рисунке и называется картой геометрического скользящего среднего, см. работу Montgomery,1985, 1991).

Экспоненциально взвешенные скользящие средние

В частности, можно рассчитать значения для каждой точки графика по следующей формуле:

zt = *x-ср.t + (1-)*zt-1

В данной формуле значение каждой точки  zt  рассчитывается как произведение  (лямбда) и соответствующего среднего значения x-ср.t, плюс единица минус  , умноженная на рассчитанное ранее усредненное значение для предыдущей точки графика. Параметр  (лямбда) принимает значения в интервале от  0 до 1.  Не вдаваясь в подробности (см. Montgomery, 1985, стр. 239), можно отметить, что данный метод усреднения предполагает, что вес исторически "старых" выборочных средних уменьшается по геометрическому закону при присоединении новых выборочных средних. Интерпретация контрольной карты данного типа имеет много общего с интерпретацией карты скользящего среднего. EWMA-карта позволяет обнаружить малые сдвиги исследуемых средних значений и, следовательно, ухудшение качества производственного процесса.

Регрессионные контрольные карты. Иногда может понадобиться обнаружить взаимосвязь между двумя различными параметрами производственного процесса. Например, руководство почтовой организации может захотеть узнать, сколько человеко-часов тратится на обработку некоторого объема корреспонденции. Эти две анализируемые переменные должны быть приблизительно линейно связаны друг с другом. Тогда эту взаимосвязь можно описать с помощью широко известного коэффициента корреляции Пирсона r. Описание свойств этой статистки можно найти в разделе Основные статистики. На регрессионной контрольной карте строится линия регрессии, которая выражает линейную взаимосвязь между двумя рассматриваемыми переменными. На карту также наносятся точки данных для всех наблюдений. Вокруг линии регрессии строится доверительный интервал, в который должна попадать определенная доля выборки (например, 95%). Присутствие выбросов на этом графике будет свидетельствовать о том, что для некоторых выборок не соблюдается общая тенденция взаимосвязи, которая характерна для рассматриваемых переменных.

Регрессионная контрольная карта

Применения. Для регрессионных контрольных карт существует множество областей применения. Так, например, профессиональные аудиторы могут с помощью карт данного типа обнаружить, у каких розничных торговцев число наличных трансакций превышает ожидаемое для данного уровня общего объема продаж или выделить те бакалейные магазины, в которых для существующего уровня продаж число погашенных купонов, дающих покупателю право на премию из ассортимента магазина при накоплении определенного числа купонов, превышает ожидаемое. В обоих случаях выбросы на регрессионных контрольных картах (т.е. слишком большое число наличных платежей, слишком большой объем погашенных купонов) могут привлечь к себе внимание и служить основанием для более тщательной проверки.

Контрольные карты Парето. На практике оказывается, что равномерное распределение нарушения качества на различных стадиях производственного процесса или на различных предприятиях, выпускающих продукт, встречается довольно редко. Скорее, причиной большинства проблем является наличие лишь нескольких "паршивых овец в стаде". Данный принцип стал широко известен под названием принципа Парето и утверждает, что потери качества столь "плохо" распределены, что малое число возможных причин его ухудшения отвечает за большинство возникающих проблем. К примеру, вполне возможно, что в основном загрязнение воздуха возникает из-за относительно небольшого числа "грязных" автомобилей. Или, в большинстве компаний основное число убытков является следствием неудачи с одним или двумя выпускаемыми продуктами. Для выявления "паршивых овец в стаде" строят контрольные карты Парето.

Карта Парето

Они представляют собой  гистограммы, на которых показано распределение потерь от ухудшения качества (например, в долларах) по некоторым категориям. Обычно категории - причины потери качества - приводятся в нисходящем порядке значимости (по частоте возникновения, стоимости в долларах и т.д.). Очень часто карта Парето помогает определить, на что направить усилия по улучшению качества продукта.

В начало






StatSoft
(c) Copyright StatSoft, Inc., 1984-1998
STATISTICA является торговой маркой StatSoft, Inc.